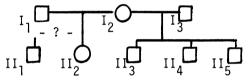
PARENTAGE TESTING FOR THE DETERMINATION OF SIBSHIP. Chantal R. Harrison and Sherrie L. Warner, Dept. of Pathology, Univ. of TX Health Science Center, San Antonio, TX 78284, USA. INTRODUCTION

Genetic markers in blood have been used for paternity investigation and methods to quantify the genetic data into a paternity index or a probability of paternity have been described (1,2,3,4,5). We report here a case where the genetic investigation was attempted to determine whether two adults were biological siblings. A method to quantitate the genetic data and calculate a fraternity index using logic similar to that used to calculate a paternity index was devised for this particular situation. We also report a general method to calculate a fraternity index for a biallelic codominant genetic system. CASE REPORT

Two adults (II₁ and II₂), North American Caucasians, a male and a female, had been adopted in the same family. Their adoptive parents are now deceased and they wish to know whether they are biological siblings. They now have children and there is a possibility that their cnildren want to intermarry. Records of who the biological parents (I] and I₂) of the woman are available. Unfortunately they are also deceased. However, her mother had three additional children from a different man (I_3) . Two are available for testing (II_3, II_4) . These relationships are better described in the following pedigree.



The ABO, Rh, MNS, Kell, Duffy, Kidd, and HLA type of II1, II2, and II3, and II4 were determined with the following results.

II₁: A_1B , cDEe, Ns, K-, Fy^aFy^b , Jk^aJk^b , A1A2B3B27 II₂: A_1B , cde, Ms, K+, Fy^b , Jk^aJk^b , A2A29B12 II₃: B, cde, MSs, K-, Fy^aFy^b , Jk^a , A1A29B8B12 II₄: 0, cde, MSs, K-, Fy^b , Jk^aJk^b , A1A29B8B12 II_{r} : Was not available for testing.

LOGIC OF CALCULATION

The following logic was used to determine a fraternity index in this particular situation:

- 1) Identify what possible genotypes I₂ must have had to sire her 3 known children (II₂, II₃, and II₄).
- 2) Identify which possible corresponding genotypes I3 must have had to sire II3 and II4.
- 3) Calculate the frequency of such matings in the general population.
- 4) Calculate the frequency of the combination of each particular mating and 2 children of II₃ and II₄ genotypes.
- 5) Calculate the relative frequency of such combination.
- 6)
- Deduce the probability of each genotype for I2. Identify which possible genotypes I1 must have had to sire II2. 7)
- 8) Calculate the frequency of the possible I1 and I2 matings.
- Calculate the frequency of the combination of each particular mating and one child of II2 genutype. 91

Advances in Forensic Haemogenetics 1

(c) Springer-Verlag Berlin Heidel Edited by B. Brinkmann and K. Henningsen © Springer-Verlag Berlin Heidelberg 1986

10) Calculate the relative frequency of such combination.

 Calculate the probability that such combination could result in a second child of II₁ genotype: This is the X value (probability that II₁ and II₂ are sibs).

- 12) Calculate the frequency of II₂ phenotype in the random population: This is the Y value (probability that II₁ is a random unrelated child).
- 13) X/Y (fraternity index) is calculated for each blood group and the final result is the total product of each X/Y.

RESULTS OF CALCULATIONS

Below is an example of the calculation method for the ABO blood group using the genetic frequencies for U.S. whites published by the American Association of Blood Banks in 1977(5).

To have sired an A1B, a B, and an O child I₂ has only two possible genotypes, A1O and BO. If she is A1O then I₃ must be BO; if she is BO then I₃ may be OO, AO, or AB (here A is A1 + A2). First we calculated the probability that I₂ is A1O or BO.

	•		-				Relative
			Frequency	Frequency	Frequency	Frequency	Frequency
Ia		I.	of Mating	of O	of B	of	of
-2		-3		Child	Child	Combination	Combination
A ₁ Û	Х	B0	.0261663248	.25	.25	.0016353953	.0980099502
<u>в</u> 0	Х	00	.0438983267	.5	.5	.0109745817	.6577114428
BO	Х	AO	.0349327078	.25	.25	.0021832942	.1308457711
B0	Х	BO	.0100946228	.25	.75	.0018927418	.1134328358
					Total	.016686013	1,000000000

Probability that I2 is A₁0: .0980099502

I₂ is BO: .9019900492

Then we identify the possible genotypes of I₁: if I₂ is A₁O then I₁ may be BB, BO, or AB,

if I_2 is BO then I₁ may be A_1A_1 , A_1A_2 , A_1O or A_1B

2				
I ₂ I ₃	Frequency of Mating	Frequency A _l B Child	Frequency of Combination	Relative Frequency of Combination
А ₁ О Х ВВ	.0005661055	.5	.0002830527	.0030577025
$A_1^{0} \times B0$ $A_1^{0} \times AB$.0137653015	.25 .25	.0034413254	.037175225
BO X A _l A _l	.0350053318	.5	.0175026659	.1890741133
BO $X A_1 A_2$.25		
BO X A ₁ O	.2853734159	.25	.071343354	.7706929592
во хајв Ј		.25		
		Total	.092570398	

The probability that the combination have another A_1B child is X = .2980329539 Y = .029944Thus X/Y for the ABO is 9.953010752 Advances in Forensic Haemogenetics 1 (c) Springer-Verlag Berlin Heidelberg 1986 Similar calculations for all genetic systems tested give the following results.

Blood Group		Х/Ү		
ABO		9.953010752		
Rh		.6684571344		
MNS		.0927939075		
Kell		.5224660397		
Duffy		.5235727762		
Kidd		1.16241347		
HLA		.29831395		
	Total Product	.0585733327		

Thus the final X/Y or FI (fraternity index) is .0587 or $\frac{1}{FT}$ = 17.1 It is 17.1 times more likely that they are not biological brother and sister. A probability of fraternity (PF) could be calculated as $\frac{\Gamma I}{1 + FI} = .055$ or 5.5%. FI

Of interest is the MNS blood group system. II1 is homozygous for Nsand II2 is homozygous for Ms. The two half-brothers are MSS. If the third one was homozygous for either MS or NS that would completely exclude II_1 as a brother of II_2 , since it would exclude the possibil-ity that I_2 possesses Ns. The HLA system could also bring out an exclusion if the third untested half-brother would turn out to be entirely different from II₁, II₃, and II_{Δ}. Thus testing this person might bring out a certitude instead of a probability in this case. GENERAL CALCULATIONS FOR A BIALLELIC CODOMINANT SYSTEM

Let the system have two genes A, B with frequencies of p, q. The X value is the probability of the same parents siring both children. The Y value is the product of the phenotypic frequencies of the two children. Example: Child #1 is AA, child #2 is AB.

Possible phenotypes of parents of both children	Frequency of Mating	Frequency of Child #1	Frequency of Child #2	Frequency of Combination
ΑΒ Χ ΑΑ	4p ³ q	.5	.5	p ³ q
АВ Х АВ	4p ² q ²	.25	.5	$\frac{.5p^2q^2}{.5p^2q^2}$
X = probability of	same parents	siring both	children = p'	² q (p+.5q)
Y = product of phenotypic frequencies = $2p^{3}q$				

Y = product of phenotypic frequencies

$$\frac{\chi}{\gamma} = \frac{2p+q}{4p} = \frac{1}{2} + \frac{q}{4p} = \frac{1}{4} + \frac{1}{4p}$$

Thus when the two children share one antigen $\frac{X}{V}$ for that system is >1,

when the frequency of the shared antigen is <.33. By applying the same logic to all possible phenotypic combinations the following formulas are obtained.

> Advances in Forensic Haemogenetics 1 (c) Springer-Verlag Berlin Heidelberg 1986

child 1 child 2	AA	АВ	ВВ
AA	$1 + \frac{q}{p} + \frac{q^2}{4p^2}$		
	or		
	$\frac{1}{4} + \frac{1+2p}{4p^2}$.25
	always >l		
	$\frac{1}{2} + \frac{q}{4p}$	<u>1 + pq</u> 4 pq	$\frac{1}{2} + \frac{p}{4q}$
AB	or	or (p-q) ² + pq	or
	$\frac{1}{4} + \frac{1}{4p}$	(p-q) [_] + pq 4 pq	$\frac{1}{4} + \frac{1}{4p}$
	always >.5	always >1	always >.5
	.25		$1 + \frac{p}{q} + \frac{p^2}{4q}2$
BB			or
			$\frac{1}{4} + \frac{1 + 2q}{4q^2}$
			always >l

This shows that when the two subjects share two antigens the FI is always greater than 1; if they share one antigen it is always greater than .5 and if they do not share any antigen the FI is .25 and independent from the frequency of the genes. CONCLUSION

A logic similar to that used to calculate a paternity index can be applied to the determination of a paternity index to quantitate the possibility that two individuals may be biological siblings. In this particular instance a calculation similar to the power of exclusion cannot be used since the power of exclusion will always be 0. REFERENCES

- 1. Boyd WC: Tables and normogram for calculating chances of excluding paternity. Am J Hum Gen 6:426-433, 1954.
- Hummel VK: Biostatistical opinion of parentage based upon the results of blood group tests. Stuttgart, Gustav-Fischer Verlag, 1971.
- Walker RH: Probability in the analysis of paternity test results in "Paternity Testing," Washington, American Association of Blood Banks, 1978.
- Inclusion probabilities in parentage testing. Proceedings of Airlie Conference. Arlington, American Association of Blood Banks, 1983.
- 5. Probability of inclusion in paternity testing. Arlington, American Association of Blood Banks, 1982.

Advances in Forensic Haemogenetics 1 (c) Springer-Verlag Berlin Heidelberg 1986