A SILENT ALLELE OF PROPERDIN FACTOR B POLYMORPHISM (BF*QO) IN FIVE FAMILY MEMBERS:

J. Bertrams¹ and G. Mauff² (Abteilung für Laboratoriumsmedizin Elisabeth-Krankenhaus Essen¹, Hygiene-Institut, Universität Köln², FRG)

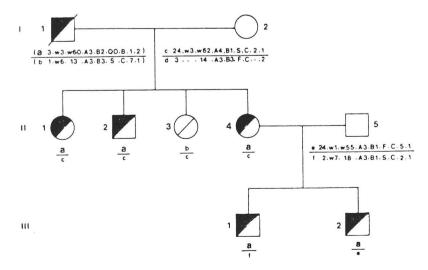
Introduction

Only three families with an apparently silent allele of the properdin factor B polymorphism (BF*QO) have been described until now (1-3). We found another family with altogether five BF*QO carriers during a disputed paternity case by a seemingly inverse homozygosity of the BF alleles S and F between mother and child (4).

Material and Methods

BF typing was performed by thin layer agarose gel electrophoresis and immunofixation with BF-specific antisera (5) (Atlantic Antibodies) and in addition by a hemolytic overlay after isoelectric focussing of BF allotypes (6). Factor B protein concentration was measured by radial immunodiffusion, functional levels of factor B by radial diffusion hemolysis (7). HLA-A,B,C,DR typing was performed by the standard lymphocytotoxicity technique (8). C2,C4 and GLO typing was done as previously discribed (9-11).

Results


The apparent inverse homozygosity of BF alleles S and F between mother (II-4) and child (III-2) is clearly demonstrated in Fig. 1 and could also be shown by the hemolytic overlay after isoelectric focussing of BF allotypes.

> Advances in Forensic Haemogenetics 1 (c) Springer-Verlag Berlin Heid Edited by B Brinkman and K. Henningsen © Springer-Verlag Berlin Heidelberg 1986

9 10 11 12 13 14 8 5 6

Fig.1 BF phenotypes after agarose gel electrophoresis and specific immunofixation: 1=control BF FF, 2=control BF FS, 3=control BF SS, 4=grandmother I-2, BF FS, 5=brother II-2, BF S(QO), 6=sister II-3, BF SS, 7=sister II-1, BF S(QO), 8=son III-2, BF F(QO), 9=son III-1, BF S(QO), 10=mother II-4, BF S(QO), 11=father II-5, BF FS, 12=control BF FF, 13=control BF FS, 14=control BF SS

In the pedigree of this family, given in Fig.2, heterozygous factor B deficient individuals are indicated by half black symbols. Haplotypes of the MHC region are marked by letters a,b,c,d,e,f. The given order of MHC loci is HLA-A, HLA-C, HLA-B, C4A, C4B, Bf, C2, HLA-DR, GLO.

Fig.2 Pedigree of the family with five BF*QO carriers

Advances in Forensic Haemogenetics 1 (c) Springer-Verlag Berlin Heidelberg 1986 95

The BF*QO allele is carried by haplotype a. As shown in the pedigree the silent BF allele came from the deceased grandfather (I-1) and existed in altogether five individuals (II-1, II-2, II-4, III-1, III-2).

Immunochemical levels of factor B protein and factor B hemolytic activity (relative and absolute) are given in Table 1.

Family member	BF-type	Factor B protein	Factor B hemolytic activity		
		(mg/l)*	relative (U/mg)	absolute (U/I)	
1-2	FS	113.7	1.218	138.5	
II-1	SQO	68.6	1.914	131.3	
II-2	SQO	97.5	1.222	119.1	
11-3	S	126 5	1.095	138.5	
11-4	SQO	85 3	1.581	134.9	
11-5	FS	115.7	1.067	123.4	
III-1	SQO	80.9	1.570	127.0	
111-2	FQO	68.1	1.435	97.7	

Table 1. Immunochemical and functional levels of factor B

* Normal range 170-420 mg/l

Table 2. BF*QO MHC haplotypes

While the protein level was markedly decreased in the five BF*QO carriers, the absolute hemolytic activity of factor B was normal in four out of them. Obviously the lack of an expressed BF gene is compensated by the functionally normal BF*S of BF*F allele on the other chromosome.

This compensating effect is documented by the relative increase of hemolytic activity in the heterozygous BF deficient individuals.

An association of BF*QO with special alleles of other MHC loci, as described for rare alleles of the BF system (12), does not seem to exist (Table 2).

Loci							Reference		
HLA-A	HLA-C	HLA-B	C4A	C4B	BF	C2	HLA-DR	GLO	
3	nt	7	n t	nt	QO	n.t.	n.t.	2	Weidinger et al (1979)
2	w3	15	n.t	n.t.	QO	В	4	1	Suciu-Foca et al (1980
w24	w1	w.54	3	6	QO	с	w8	2	Tokunaga et al (1984)
3	w.3	w6()	3	2	00	B	1	2	This study

n.t. = not tested

It is of interest, however, that BF*QO may possibly be associated with rarer alleles of the C4B locus (C4B*2, C4B*6) and the C2 locus (C2*B).

Since among numerous cases of single or combined complement component deficiencies complete factor B deficiency has not

> Advances in Forensic Haemogenetics 1 (c) Springer-Verlag Berlin Heidelberg 1986

been reported, nonexpression of B obviously acts as a lethal factor. All hemizygous deficient individuals of this family were apparently healthy. Thus BF heterozygous deficiency seems to be without any disease risk.

References:

- Weidinger S, Schwarzfischer E, Cleve H (1979) Properdin factor B-polymorphism: An indication for the existence of a Bf°allele. Z Rechtsmed 83: 259-264
- 2. Suciu-Foca N, O'Neill G, Rubinstein P (1980) Evidence for the existence of possible Bf "null" allele. In: Terasaki PI (ed) Histocompatibility Testing 1980. UCLA Tissue Typing Laboratory, Los Angeles, pp 935-936
- 3. Tokunaga K, Omoto K, Yukiyama Y, Sakurai M, Saji H, Maruy E (1984) Further study on a BF silent allele. Hum Genet 67: 449-451
- Bertrams J, Mauff G (1985) Another family with a silent allele of properdin factor B polymorphism (BF*QO) Human Genetics (in press)
- 5. Alper CA, Boenisch T, Watson L (1972) Genetic polymorphism in human glycine-rich-beta-glycoprotein. J Exp Med 135: 68-80
- 6. Mauff G, Federmann G, Hauptmann G (1980) A hemolytically inactive gene product of factor B. Immunobiology 158: 96-100
- 7. Martin A, Lachmann PJ, Halbwachs L, Hobart MJ (1976) Hemolytic diffusion plate assays for factors B and D of the alternative pathway of complement activation.
- 8. Terasaki PI, McClelland JD (1964) Microdroplet assay of human serum cytotoxins, Nature 204: 998-1000
- 9. Dewald G, Rittner Ch (1980) Polymorphism of the second component of human complement: Observation of the rare phenotype C2 (C2B) and data on the localization of the C2 locus in the HLA region. Vox Sang 37: 47-54
- C2 locus in the HLA region. Vox Sang 37: 47-54
 10. Mauff G, Alper CA, Awdeh Z, Batchelor JR, Bertrams J, Bruun-Petersen G, Dawkins RL, Demant P, Edwards J, Grosse-Wilde H, Hauptmann G, Klouda P, Lamm L, Mollenhauer E, Nerl C, Olaisen B, O'Neill G, Rittner Ch, Roos MH, Skanes V, Teisberg P, Wells L (1983) Statement on the nomenclature of human C4 allotypes. Immunobiology 164: 184-191
- 11. Kömpf J, Bissbort S, Gussmann S, Ritter H (1975) Polymorphism of red cell glyoxalase I (E.C.: 4.41I). A new genetic marker in man. Humangenetik 27: 141-143
- 12. Awdeh ZL, Raum D, Yunis EJ, Alper CA (1983) Extended HLA-complement-glyoxalase allele haplotype: Evidence for Tt-like complex in man. Proc Natl Acad Sci USA 80: 259-263